.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/plot_metadata.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_auto_examples_plot_metadata.py>`
        to download the full example code

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_plot_metadata.py:


Metadata
========

ONNX format contains metadata related to how the
model was produced. It is useful when the model
is deployed to production to keep track of which
instance was used at a specific time.
Let's see how to do that with a simple 
logistic regression model trained with
*scikit-learn* and converted with *sklearn-onnx*.

.. GENERATED FROM PYTHON SOURCE LINES 16-31

.. code-block:: default


    from onnxruntime.datasets import get_example
    example = get_example("logreg_iris.onnx")

    import onnx
    model = onnx.load(example)

    print("doc_string={}".format(model.doc_string))
    print("domain={}".format(model.domain))
    print("ir_version={}".format(model.ir_version))
    print("metadata_props={}".format(model.metadata_props))
    print("model_version={}".format(model.model_version))
    print("producer_name={}".format(model.producer_name))
    print("producer_version={}".format(model.producer_version))





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    doc_string=
    domain=onnxml
    ir_version=3
    metadata_props=[]
    model_version=0
    producer_name=OnnxMLTools
    producer_version=1.2.0.0116




.. GENERATED FROM PYTHON SOURCE LINES 32-33

With *ONNX Runtime*:

.. GENERATED FROM PYTHON SOURCE LINES 33-44

.. code-block:: default


    import onnxruntime as rt
    sess = rt.InferenceSession(example, providers=rt.get_available_providers())
    meta = sess.get_modelmeta()

    print("custom_metadata_map={}".format(meta.custom_metadata_map))
    print("description={}".format(meta.description))
    print("domain={}".format(meta.domain, meta.domain))
    print("graph_name={}".format(meta.graph_name))
    print("producer_name={}".format(meta.producer_name))
    print("version={}".format(meta.version))




.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    custom_metadata_map={}
    description=
    domain=onnxml
    graph_name=3c59201b940f410fa29dc71ea9d5767d
    producer_name=OnnxMLTools
    version=0





.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 0 minutes  0.008 seconds)


.. _sphx_glr_download_auto_examples_plot_metadata.py:


.. only :: html

 .. container:: sphx-glr-footer
    :class: sphx-glr-footer-example



  .. container:: sphx-glr-download sphx-glr-download-python

     :download:`Download Python source code: plot_metadata.py <plot_metadata.py>`



  .. container:: sphx-glr-download sphx-glr-download-jupyter

     :download:`Download Jupyter notebook: plot_metadata.ipynb <plot_metadata.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_